

The Problem

Climate Change Mitigation:

Kelp and other ocean algae generate 50-85% of Earth's oxygen. [2]

Human benefit: Kelp forests generate over US\$500 billion annually. [1]

Temperature Sensitivity: Kelp faces critical threats from climate change, overfishing, and unsustainable harvesting practices.

Thus, there is a need to monitor Kelp.

Literature Review: Models Employed

DCGAN + CNN

- Dataset: NDAWI values from Sentinel-2 remote sensing images amplified by DCGAN.
- Optimal Results:

Overall accuracy = 94.68% kappa = 0.913

- Amplified images classified by UNet, DeepLabv3, and SegNet.
- DCGAN amplification increased OA by 4.43%, kappa by 0.032, and Precision by 4%

= <u>2*(TP*TN)*(FP*FN)</u> (TP+FP)*(FP+TN)*(TP+FN)*(FN+TN)

Mask R-CNN

- Dataset: Satellite imagery (Landsat Thematic Mapper) with cloud and landmass masks
- Hyperparameters: Learning rate and anchor size.
- Optimal Results:

Jaccard's index: 0.87 ± 0.07 . Dice index: 0.93 ± 0.04

 Cost-efficient and less time-consuming approaches for long-term marine ecological monitoring

Jaccard Index = $A \cap B / A \cup B$

Literature Review: Why CNNs?

- CNNs can automatically learn and extract relevant features from the image data itself, unlike traditional methods that rely on manually designed feature extractors.
- This makes CNNs well-suited for the complex task of identifying the distinct floating canopy patterns of kelp forests.
- CNNs can leverage data augmentation techniques like rotating, flipping, rescaling images to artificially increase the training data, which the paper shows improves kelp detection performance by reducing overfitting.
- The hierarchical, multi-layer architecture of CNNs makes them highly effective at capturing the complex spatial patterns and shapes characteristic of floating kelp canopy distributions visible in satellite images.

Literature Review: Vegetation Indices

Index	Abbreviation	Formula	Author and Year
Normalized Difference Vegetation Index	NDVI	$\frac{(NIR - R)}{(NIR + R)}$	Rouse et al., 1974
Atmospherically Resistant Vegetation Index	ARVI	$\frac{(NIR - RB)}{(NIR + RB)}$ $RB = R - \gamma(B - R)$	Kaufman and Tanré, 1992
Redness Index	RI	$\frac{(R-G)}{(R+G)}$	Escadafal and Huete, 1991
Transformed Vegetation Index	TVI	$\frac{(NDVI + 0.5)}{ NDVI + 0.5 } \sqrt{ NDVI + 0.5 }$	Perry and Lautenschlager, 1984
Differenced Vegetation Index	DVI	(NIR – R)	Clevers, 1986

A. Bannari, D. Morin, F. Bonn, and A. R. Huete, "A review of vegetation indices," Remote Sensing Reviews, vol. 13, no. 1-2, pp. 95-120, aug 1995.

Index	Abbreviation	Formula	Author and Year
Normalised Difference Water Index	NDWI	$\frac{G - NIR}{G + NIR}$	Gao (1996)
Chlorophyll Index	CI	$\frac{G}{R}$	Xu (2006)
Modified Normalized Difference Water Index	MNDWI	$\frac{G - SWIR}{G + SWIR}$	Abrams (1998)

DATASET

Image Format: (350x350) px, TIFF, 30m resolution

RED GREEN BLUE NEAR INFRARED (NIR)

SHORTWAVE INFRARED CLOUD MASK ELEVATION MAP

PIXEL-WISE LABEL

Dataset Sample

RGB

Probability density functions of absence and prescence of Kelp

FEATURES EXTRACTED

- Atmospherically Resistant Vegetation Index (ARVI)
- Chlorophyll Index (CI)

Spectral Vegetation Index (SVI)

- Modified Normalized Difference Water Index (MNDWI)
- Normalized Difference
 Water Index (NDWI)
 - Normalized Difference Vegetation Index (NDVI)

Pre-Processed Images

RGB NDVI **NDWI** Label

Pre-Processed Images

Model Pipeline

Layers

Images with Streaks

Streak Finder Model

Dataset Statistics:

Number of Images with

Streaks: 848

Number of Images without

Streaks: 4787

• Ratio: 0.1505

Performance Metrics:

• **F1 Score:** 0.952

• Balanced Accuracy: 0.954

Conv2D and MaxPool Layers

Detection Models

Model Architecture	Accuracy	F1 score
ResNet50	0.7734	0.7531
ResNet34	0.7713	0.7593
ResNet18	0.7129	0.6913
Inception	0.716	0.6732
Voting Classifier	0.7812	0.8387

Segmentation Model

Model: UNet

Index: MNDWI

(Modified Normalized Difference

Water Index)

Average dice Coefficient: 0.553

Dice coefficient = $\frac{2 * |X \cap Y|}{|X| + |Y|}$

Model Architecture:

Graphic Courtesy: Y Ding, F Chen, Y Zhao, Z Wu "A Stacked Multi-Connection Simple Reducing Net for Brain Tumor Segmentation" IEEE Access, vol. 7, pp 99 5, 2019. [Online]. Available: 10.1109/ ACCESS.2019.2926448.

Segmentation Model Output

IMAGE

GROUND TRUTH

MODEL OUTPUT

DataDriven Competition Leaderboard

1st Place: Epoch IV

- Model Used: A mixed ensemble of models trained on different feature sets, including UNets with VGG encoders, SwinTransformers and a ConvNext model.
- Results:

Dice Coefficient: 0.7332

 Gradient boosting decision tree was also used with the already trained models.

2nd Place: xultaeculcis

- Model Used: The model was a UNet with EfficientNet-B5 encoder pretrained on ImageNet.
- Results:

Dice Coefficient: 0.7318

 They even tried XGBoost and SAHI(Slicing Aided Hyper Inference) as alternate pretrained model options that gave them Dice Coefficients of 0.5125 and 0.6848 respectively.

Sources

[1] Eger, A.M., Marzinelli, E.M., Beas-Luna, R. et al. The value of ecosystem services in global marine kelp forests. Nat Commun 14, 1894 (2023). https://doi.org/10.1038/s41467-023-37385-0

[2] National Oceanic and Atmospheric Administration. (n.d.). Ocean oxygen. NOAA's National Ocean Service. Retrieved from https://oceanservice.noaa.gov/facts/ocean-oxygen.html

